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a b s t r a c t

This article proposes a delay-kernel-dependent approach to deal with the saturated control problem
of linear systems subject to mixed delays: discrete delay and distributed delay considering kernel.
By combining the state vector and the distributed delay with kernel, a new polytopic representation
strategy is used to cope with the nonlinear input saturation function. By choosing a Lyapunov–
Krasovskii functional and applying an integral inequality both related to the distributed delay kernel,
novel and less conservative results are provided to ensure the system stability. Finally, an example is
simulated to display the advantages of the developed approach.

© 2023 Elsevier Ltd. All rights reserved.
1. Introduction

Time-delay, usually categorized as discrete delay and dis-
ributed delay, is a general phenomenon frequently existing in
any practical systems, such as networked control systems,
iological systems, economic systems (Barforooshan, Derpich,
tavrou, & Ostergaard, 2020; Yan, Shen, Nguang, & Zhang, 2020).
egarding the stability analysis and controller design for time-
elay systems, the derived results independent on the delay are
enerally more conservative than the results dependent on the
elay. Over the past decades, some representative techniques like
irtinger integral (Seuret & Gouaisbaut, 2013), Bessel–Legendre

nequality (Seuret & Gouaisbaut, 2017; Seuret, Gouaisbaut, &
riba, 2015) and their combination with reciprocally convex
emma (Park, Ko, & Jeong, 2011) have been addressed to reduce
he design conservatism of linear systems with discrete delays or
istributed delays.
On the other line, for practical control systems, input satu-

ation exists in various physical devices due to the hardware
imitation. In order to process the saturation nonlinearity, sev-
ral effective tools such as sector-bound method (Yin, Seiler, &
rcak, 2021), polytopic representation method (Zhou, 2013) and
nti-windup method (Li & Lin, 2014) are proposed. For linear
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systems with time-varying discrete delay and saturated con-
trol, under the polytopic representation framework, an auxiliary
time-delay feedback is combined with the state feedback to rep-
resent the nonlinear input saturation in Chen, Fei, and Li (2015).
In addition, a distributed-delay-dependent approach is further
investigated in Chen, Fei, and Li (2016) for the saturated con-
trol issue of uncertain systems with discrete and distributed
delays. Following the similar way, the impulsive control problem
of nonlinear time-delay system subject to input saturation is
developed in Li, Li, Ouyang, and Nguang (2020). Moreover, by
extending the distributed-delay-dependent method to discrete-
time systems with distributed state delay and fast-varying input
delay, better results for saturated local stabilization have been
obtained in Chen and Wang (2020). With the utilization of the
discrete delay or distributed delay in the polytopic representation
method, less conservative results can be obtained and larger
estimated domain of attraction (DOA) can be achieved than the
delay-independent strategy. Compared with the distributed delay
system in Chen et al. (2016), the system with distributed delay
kernel is more general and practical. For example, the kernel can
be used to represent the probability density of stochastic network
transmission delay. However, the above delay-dependent poly-
topic methods in Chen et al. (2015, 2016) and Li et al. (2020) are
difficult to treat the saturated control issue of linear systems with
discrete delay and distributed delay considering kernel.

Inspired by the precedent discussions, this article investigates
the saturated control of linear systems with discrete delay and
distributed delay considering kernel. The main contributions are
given as:
(i) A new polytopic delay-kernel-dependent approach utilizing the
distributed delay with kernel is presented to deal with the saturation
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onlinearity. The existing method in Chen et al. (2016) can be
iewed as an equivalent form of our approach under the limitation
ase (infinite divided delay intervals), which will lead to the curse
f dimensionality. However, it can be avoided by our proposed
pproach.
ii) A delay-kernel-dependent Lyapunov–Krasovskii functional (LKF)
nd an integral inequality related to the kernel are applied to obtain
he analysis and synthesis conditions. Compared with the delay-
ndependent saturation handling strategy and the existing approach
dopting Legendre polynomials to approximate the kernel (Seuret
t al., 2015), the proposed delay-kernel-dependent approach is po-
ential to derive less conservative results.

The organization of this technical communique is given as
ollows. The problem formulation is presented in Section 2. In
ection 3, the stability and controller design conditions are pro-
ided. Then, the advantages of the proposed approach are verified
y some simulation results in Section 4. Section 5 shows the
onclusions and future investigations.

otation: ∥ · ∥2 and ∥ · ∥∞ represent 2-norm and ∞-norm of
vector, respectively. He(X) = X + X⊤, where (·)⊤ means the
transpose of X . ℑ(X, Y ) = Y⊤XY . I[1, a], ⊗ and eigm(X) mean the
set {1, . . . , a}, Kronecker product and the maximum eigenvalue
of matrix X , respectively.

2. Problem formulation

The considered system with discrete and distributed delays is
given as:

ẋ(t) = Ax(t)+ D1x(t − d)+ D2

∫ 0

−d
q(r)x(t + r)dr + BS(u(t)), (1)

where x(t) ∈ Rn means the state, u(t) ∈ Rf means the control
input, the nonlinear saturation function with unity level S(u(t))
s represented as S(u(t)) = [S(u1(t)) · · · S(ug (t)) · · · S(uf (t))]⊤,
(ug (t)) = sgn(ug (t))
in{1, |ūg |}, A, B, D1 and D2 are system matrices.

emark 1. For practical networked control systems, the network-
nduced communication delays are usually stochastic with some
pecial distributions. To make full use of the stochastic feature
f the communication delays, the distributed delay systems (1)
an be applied to model the delayed networked control systems,
here the probability distribution of stochastic communication
elays can be described as the delay kernel q(r). This application
f the distributed delay systems has been reported in some ex-
sting literature (Yan, Gu, Park, & Xie, 2022; Yan, Gu, Park, Xie, &
ou, 2022).

The state feedback controller is constructed as:

(t) = Kx(t), (2)

here K is the controller gain to be designed.

emma 1 (Zhou, 2013). For given integer f ≥ 1 and function
(t) ∈ R

←→
f satisfying ∥ϕ(t)∥∞ ≤ 1,

←→
f = f 2f−1, the function

f defined as kf (0) = 0 and

f (s) =
{

kf (s− 1)+ 1, Cs + Cj ̸= If , ∀j ∈ I[1, s]
kf (j), Cs + Cj = If , ∃j ∈ I[1, s] ,

here exists S(u(t)) ∈ co{Csu(t) + C−s ϕ(t) : s ∈ I[1, 2f
]} holds for

ny u(t) ∈ Rf , where co means the convex hull, C−s = I − Cs,
−
s ≜ e2f−1,kf (s)⊗C−s ∈ Rf×

←→
f , e2f−1,kf (s) means a row vector and its

lements are 0 except for the k (s)-th element is 1.
f

2

We assume that ∃ F1, F2 ∈ R
←→
f ×n such that

ϕ(t)∥∞ =
F1x(t)+ F2

∫ 0

−d
q(r)x(t + r)dr


∞

≤ 1. (3)

n terms of Lemma 1, the nonlinear saturation function S(u(t))
an be expressed as

(u(t)) =
2f∑
s=1

β t
s

[
Csu(t)+ C−s ϕ(t)

]
, (4)

here β t
s ≥ 0 and

∑2f
s=1 β t

s = 1.

emark 2. In Eq. (4), the distributed delay with kernel
∫ 0
−d q(r)

(t+r)dr is considered for the first time to describe the nonlinear
aturation function. It is more general than the existing approach
nly related to state in Lv, Cao, Li, and Luo (2022) and Zhou
2013), and is potential to reduce the design conservatism.

emark 3. For Nh = d, a polytopic distributed-delay saturation
epresentation approach in Chen et al. (2016) is given as

ϕ(t)∥∞ =
F1x(t)+ N∑

j=1

F2j

∫
−(j−1)h

−jh
x(t + r)dr


∞

≤ 1. (5)

f F2j = F2qj and q(−jh) ≜ qj are chosen, then we have

ϕ(t)∥∞ =
F1x(t)+ N∑

j=1

F2

∫
−(j−1)h

−jh
qjx(t + r)dr


∞

≤ 1, (6)

he limitation of which for N → ∞ is equivalent to the form
3) in this work. Under such situation, it yields infinite dimen-
ions of analysis conditions by using the approach in Chen et al.
2016), which fails to design the saturated controller for the
istributed-kernel-based delay system (1).

In order to deal with the distributed delay item
∫ 0
−d q(r)x(t +

)dr , we define q(r) = q0(r) and construct

(r) =
[
q0(r) · · · qi(r) · · · qκ (r)

]⊤
, Q (r) = q(r)⊗ I,

(t) =
∫ 0

−d
Q (r)x(t + r)dr, I =

[
In 0n×κn

]
. (7)

ased on Feng and Nguang (2016), the basic principle to choose
i(r) is that the property q̇(r) = Qq(r) should be satisfied.
his implies that the elements qi(r) are the solutions of linear
omogeneous differential equations with constant coefficients in
he matrix Q ∈ Rn(κ+1)×n(κ+1). By combining (1), (2), (4) and (7),
he closed-loop system is given as:

˙(t) =
2f∑
s=1

β t
s

[
(A+ BCsK + BC−s F1)x(t)

+ D1x(t − d)+ (D2 + BC−s F2)IQ(t)
]
. (8)

or further proceeding, a technical lemma is provided as follows.

emma 2 (Feng & Nguang, 2016). For a matrix M > 0 ∈ Rn×n,
= M⊤ and the vector q(r) defined in (7), it yields∫ 0

−d
ℑ (M, x(r)) dr ≥ ℑ

(
Q⊗M,

∫ 0

−d
Q (r)x(r)dr

)
(9)

ith Q−1 =
∫ 0 q(r)q⊤(r)dr > 0.

−d
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. Main results

First, the stability conditions for system (8) with mixed delays
nd input saturation are formed in Theorem 4.

heorem 4. For given constants α, d and any initial condition
satisfying V(0) ≤ 1, under the controller gain K , the system (8)
is asymptotically stable, if there exist symmetric matrices P > 0,
M > 0, S > 0, and matrices X , F1 and F2 such that

s < 0, (10)[
1 Θ⊤l

Θl P

]
≥ 0, (11)

where X = e⊤1 X + αe⊤2 X, S = Q⊗ S, Θl =
[
F1l F2lI

]
,

Ψs = Ξ + He(XYs), P = P + diag{0,M}, M = Q⊗M,

Ξ = He(Ω⊤1 PΩ2)+ ℑ(M + dS, e2)− ℑ(M, e3)− ℑ
(
S, eq

)
,

1 =

[
e2
eq

]
, Ω2 =

[
e1

Q (0)e2 − Q (−d)e3 − Qeq

]
, eq =

⎡⎢⎣ e4
...

e4+κ

⎤⎥⎦ ,

Ys = −e1 + (A+ BCsK + BC−s F1)e2 + D1e3
+ (D2 + BC−s F2)Ieq,

eh ≜
[
0n,n(h−1) In 0n,n(4+κ−h)

]
, h = 1, . . . , 4+ κ.

roof. Defining χ⊤(t) ≜
[
ẋ⊤(t), x⊤(t), x⊤(t − d),Q⊤(t)

]
and left-

nd right-multiplying the condition (10) from both sides by χ⊤(t)
nd χ (t), we have(
Ψs, χ (t)

)
< 0, (12)

hich further ensures
2f∑
s=1

β t
s

(
ℑ
(
Ψs, χ (t)

))
< 0. (13)

y constructing X = Xe⊤1 + αXe⊤2 , it is derived from system (8)
hat
2f∑
s=1

β t
sℑ

(
XYs, χ (t)

)
= 0. (14)

ubtracting (13) by (14), one can get(
Ξ , χ (t)

)
= ℑ

(
He

(
Ω⊤1 PΩ2

)
, χ (t)

)
+ ℑ(M + dS, e2χ (t))

− ℑ(M, e3χ (t))− ℑ
(
S, eqχ (t)

)
< 0. (15)

efine η(t) = [x⊤(t) Q⊤(t)]⊤ and construct an LKF as

(t) = V1(t)+ V2(t), (16)

here

1(t) = ℑ
(
P, η(t)

)
,V2(t) =

∫ t

t−d
ℑ(M + (r − t + d)S, x(r))dr.

y differentiating V(t), it gives

V̇(t) = He
(
η⊤(t)P η̇(t)

)
+ ℑ(M + dS, x(t))

− ℑ(M, x(t − d))−
∫ 0

−d
ℑ(S, x(t + r))dr. (17)

Applying Lemma 2 to handle the integral item, one gets

−

∫ 0

ℑ(S, x(t + r))dr ≤ −ℑ (S,Q(t)) . (18)

−d

3

According to q̇(r) = Qq(r), it leads to

Q̇(t) = Q (0)x(t)− Q (−d)x(t − d)− QQ(t). (19)

Based on (19), it yields

η(t) = Ω1χ (t), η̇(t) = Ω2χ (t). (20)

From (15), (17)–(20), the system stability is ensured by

V̇(t) ≤ ℑ
(
Ξ , χ (t)

)
< 0. (21)

According to (21), we get V̇(t) < 0 and V(0) > V(t).
With the aid of Lemma 2, it leads to

ℑ(P, η(t)) ≤ ℑ(P, η(t))+ ℑ (M,Q(t))

+

∫ 0

−d
ℑ((r + d)S, x(t + r))dr ≤ V(t). (22)

By using Schur complement to (11), it yields

Θ⊤l Θl ≤ P, l ∈ I[1,
←→
f ]. (23)

According to (23), it gives

F1lx(t)+ F2lIQ(t)
⏐⏐⏐2 = ℑ(Θ⊤l Θl, η(t)

)
≤ ℑ

(
P, η(t)

)
. (24)

For any initial condition meeting V(t) ≤ V(0) ≤ 1, it is ob-

served from (22) and (24) that
⏐⏐⏐F1lx(t) + F2lIQ(t)

⏐⏐⏐2 ≤ 1 holds.
This indicates that the assumption (3) is ensured. Therefore, the
stability of system (8) is ensured for any initial state satisfying
V(0) ≤ 1. ■

Remark 5. It is unavoidable that the approximation error will
be introduced by using Legendre polynomials to approximate
the kernel q(r) in Seuret et al. (2015). Compared with Seuret
et al. (2015), the kernel-dependent integral inequality given in
Lemma 2 is able to treat the distributed delay by excluding the
approaching error and decrease the conservatism.

Second, in terms of the above theorem, the saturated con-
troller design criteria formulated by linear matrix inequalities
(LMIs) are deduced in Theorem 6.

Theorem 6. For given scalars α, and d, if there exist symmetric
matrices P̂ > 0, M̂ > 0, Ŝ > 0, and matrices L, Y , N1 and N2 such
that for ∀r ∈ I[1, 2f

], ∀l ∈ I[1,
←→
f ], the following conditions

hold:

Ψ̂s < 0, (25)[
1 Θ̂⊤l

Θ̂l P̂

]
≥ 0, (26)

where X̂ = e⊤1 + αe⊤2 , Ŝ = Q⊗ Ŝ, Θ̂l =
[
N1l N2lI

]
,

Ψ̂s = Ξ̂ + He(X̂Ŷs), P̂ = P̂ + diag{0, M̂}, M̂ = Q⊗ M̂,

Ξ̂ = He(Ω⊤1 P̂Ω2)+ ℑ(M̂ + dŜ, e2)− ℑ(M̂, e3)− ℑ
(
Ŝ, eq

)
,

Ŷs = −Ye1 + (AY + BCsL+ BC−s N1)e2 + D1Ye3
+ (D2Y + BC−s N2)Ieq,

then for any initial condition satisfying V(0) ≤ 1, the asymptotic
stability of system (8) can be ensured by the controller K = LY−1.

Proof. Define Y = X−1, M̂ = ℑ(M, Y ), Ŝ = ℑ(S, Y ), Ŝ =

ℑ(S, I(κ+1) ⊗ Y ), M̂ = ℑ(M, I(κ+1) ⊗ Y ), KY = L, Θl(I(κ+2) ⊗ Y ) =[
N1l N2lI

]
.

Pre- and post-multiplying (10) with Y⊤ = In(κ+4) ⊗ Y⊤ and Y,
we derive the condition (25).
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Following the similar way in the above, the condition (26) is
also obtained, which completes the proof. ■

Next, an optimization problem is proposed to derive a larger
estimation of DOA (Aσ ) when the controller is designed. Accord-
ing to the chosen LKF (16), we have

V1(t) ≤ η⊤(t)Pη(t) ≤ η⊤(t)diag{Ω0, Ω1}η(t)

≤ x⊤(t)eigm(Ω0)x(t)+ Q⊤(t)eigm(Ω1)Q(t)

≤
(
eigm(Ω0)+ d eigm(Ω1)eigm(Q

−1)
)
∥x(t)∥22, (27)

V2(t) ≤
(
d eigm(M)+ d2eigm(S)

)
∥x(t)∥22. (28)

Then, the bound of Aδ can be estimated by

V(0) ≤
(
eigm(Ω0)+ dϖeigm(Ω1)

+ d eigm(M)+ d2eigm(S)
)
σ 2, (29)

where ∥x(0)∥2 ≤ σ , ϖ = eigm(Q−1).
As in Chen et al. (2016), the constraint Y−⊤Y−1 ≤ νI with a

variable scalar ν > 0 is considered, which is ensured by[
νI I
I He(Y )− I

]
≥ 0. (30)

Define Ω̂0 = ℑ(Ω0, Y−1), Ω̂1 = ℑ(Ω1, I(κ+1) ⊗ Y ) and Ω̂ ≜

diag{Ω̂0, Ω̂1} and let

P̂ ≤ Ω̂, Ω̂i ≤ γiI, i = 0, 1, M̂ ≤ a1I, Ŝ ≤ a2I. (31)

Thus, the maximization of Aδ in Theorem 6 can be optimized by
the following optimization problem:

Problem 1. minP̂,M̂,Ŝ,Ωi,L1,L2,N1,N2,Y ,ν,γ0,γ1,a1,a2
ρ subject to LMIs

(30)–(31), (25)–(26) where

ρ = ϵν + (γ0 + dϖγ1 + da1 + d2a2)

and ϵ is a weighting parameter. Consequently, the maximum σ is
derived by σmax =

√
1/℧, where ℧ = eigm(Ω0)+ dϖeigm(Ω1)+

eigm(M)+ d2eigm(S).

. Example

The system parameters are chosen as

1 =

[
0.2 0
0.4 −0.7

]
,D1 =

[
0.6 0.4
0 −0.5

]
,D2 =

[
−0.3 0.1
0 −0.6

]
,

=

[
1 0.5
1 −1

]
, q(r) = −(10/d)2re

10r
d , r ∈ [−d, 0],

here the kernel q(r) satisfies Gamma distribution. For κ = 1,
to construct the vector q(r) meeting the property q̇(r) = Qq(r),
the other term can be chosen as q1(r) = − 10

d e
10r
d . Then, the

vector q(r) and Q are obtained as q(r) =

[
−(10/d)2re

10r
d

−
10
d e

10r
d

]
,Q =[

10
d

10
d

0 10
d

]
.

By choosing ϵ = 3 × 104, α = 1, and the unity saturation
evel ū1 = ū2 = 1, the optimal estimation of DOA (Aσ ) for dif-
erent d derived by our delay-kernel-dependent approach solved
y Problem 1 and the existing delay-independent approach are
hown in Table 1. From this table, one observes that larger DOA
an be obtained by our approach than the traditional approach
ithout considering the distributed delay term. This means that
he delay-kernel-dependent term and the auxiliary matrix F2 are
helpful in reducing design conservatism.

The controller gain for d = 0.5s is computed as K =[
−0.8381 −0.5168;−0.4335 −0.0669

]
.

4

Table 1
Comparison of the estimation of DOA (Aσ ) for different d.
d/s 0.1 0.5 1

Delay-independent method
(Lv et al., 2022; Zhou, 2013)

2.0556 1.5078 1.1990

Delay-kernel-dependent
method (4)

2.2179 2.0243 1.8329

Table 2
Comparison of the estimation of DOA (Aσ ) for D2 = 0.
d/s 0.1 0.5 1

Delay-independent method
(Lv et al., 2022; Zhou, 2013)

1.1863 0.7538 0.5676

Delay-kernel-dependent
method (4)

1.4331 1.3581 1.2629

Fig. 1. The responses of state x(t) (left) and saturated control input u(t) (right)
for h = 0.5 s.

In simulation, under the initial condition x(0) = [3,−2]⊤, the
responses of the state x(t) and saturated control input u(t) for
d = 0.5s are illustrated in Fig. 1. From this figure, one observes
that the designed saturated controller is effective to guarantee the
stability when input saturation happens.

In addition, the considered distributed delay system (1) is
reduced to conventional discrete delay system by setting D2 = 0.
In this case, the corresponding comparison results are obtained
in the following table.

From Table 2, one observes that the estimations of DOA ob-
tained by our proposed method are larger than the results ob-
tained by existing delay-independent method. These comparison
results further illustrate that our proposed method is effective for
systems with discrete delay.

5. Conclusion

This paper has studied the saturated control issue of linear
systems with discrete and distributed delays. A delay-kernel-
dependent approach is proposed to handle the nonlinear sat-
uration function. Then, sufficient LMI conditions to solve the
saturated controller are obtained. Lastly, some simulation re-
sults demonstrate that our proposed delay-kernel-dependent ap-
proach is less conservative than the existing delay-independent
method. Note that the continuous-time system is considered in
this work. In the future, how to extend the proposed delay-
kernel-dependent saturated control method to discrete-time sys-
tems deserves further studies.
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